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The use of a fibre anemometer in turbulent flows 

By D. J. TRITTON 
Department of Aeronautical Engineering, Indian Institute of Science, Bangalore 

(Received 11 September 1963) 

Quartz fibre anemometers have been used (as described in subsequent papers) 
to survey the velocity field of turbulent free convective air flows. This paper 
discusses the reasons for the choice of this instrument and provides the back- 
ground information for its use in this way. Some practical points concerning 
fibre anemometers are mentioned. The rest of the paper is a theoretical study of 
the response of a fibre to a turbulent flow. An approximate representation of the 
force on the fibre due to the velocity field and the equation for a bending beam, 
representing the response to this force, form the basis of a consideration of the 
mean and fluctuating displacement of the fibre. Emphasis is placed on the 
behaviour when the spectrum of the turbulence is largely in frequencies low 
enough for the fibre to respond effectively instantaneously (as this corresponds 
to the practical situation). Incomplete correlation of the turbulence along the 
length of the fibre is taken into account. Brief mention is made to the theory of 
the higher-frequency (resonant) response in the context of an experimental 
check on the applicability of the low-frequency theory. 

1. Introduction 
The fibre anemometer (Schmidt & Reckmann 1930; Schmidt 1934; Kraus 1955, 

chapter E; Tritton 1959b) is a simple instrument that indicates fluid velocity 
by the deflexion of the free end of a fibre, commonly quartz, of which the other 
end is in effect clamped. The deflexion is observed t,hrough a tele-microscope 
with a calibrated eyepiece scale. Whilst its use in laminar flows has been success- 
ful, the fibre anemometer is at first sight an unpromising instrument for turbulent 
flows. However, there are situations in which the absence of any alternative has 
led to its use. It is the purpose of this paper to discuss some of the problems of 
such use and to present some information that facilitates it. Subsequent papers 
(Tritton 1963 a, b)  will describe experiments in which quartz-fibre anemometers 
were so used; this paper provides the background necessary for the interpretation 
of the results. The flows concerned are free convective ones. It is there that other 
methods of investigating turbulent flows run into difficulties (see $ a), and whilst 
most of the remarks in this paper are in principle generally applicable, their 
practical interest is probably confined to turbulent free convection. 

Fibre anemometers have been used once previously in a turbulent flow-by 
Kraus (1940). However, he supposed, without critical discussion, that the mean 
fibre deflexion corresponded to the mean velocity. As will be seen below this 
calls for some caution. 
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2. Reasons for using fibre anemometer 
The first choice of instrument in turbulent flow work is normally a hot-wire 

anemometer. There are a number of difficulties with this in free convection, each 
of which individually might be overcome but which cumulatively indicate the 
desirability of a different instrument. (i) In  some free convective flows, velocity 
fluctuations are comparable with the mean velocity. A hot-wire anemometer 
is not good at discriminating between the two. (ii) A t  low speeds, King’s law 
breaks down (Cooper & Linton 1934; Collis 1956), as a result of the interaction 
between forced and free convection from the wire. The speed at which this 
happens can be reduced below those often occurring in free convection only by 
using such a low wire temperature that point (iii) becomes particularly serious. 
(iii) The wire responds to both velocity and temperature variations and, although 
it is possible to allow for the latter, their existence produces loss of accuracy in 
the velocity measurements. (iv) A hot-wire anemometer changes its calibration 
slowly during use, largely as a result of its accumulating dust. In  wind-tunnel 
work it is possible both to take precautions to minimize the dust and to recali- 
brate frequently without remounting the wire. In  free convection neither of 
these is practicable. 

In  the set-up of Tritton (1963a) and Tritton (1963b) measurements close to 
the plate with a hot wire would have been further complicated by the heat losses 
to the plate (Wills 1962). 

Contrastingly, the fibre anemometer discriminates well between mean and 
fluctuating velocities; can be used a t  lower speeds than are available for calibra- 
tion (by use of a Reynolds number vs drag coefficient curve Tritton 1959bt); 
has only a small dependence, for which a correction may be made, on tem- 
perature; and retains its calibration much longer than a hot-wire anemometer. 
It is the first of these points that really decides in favour of a mechanical detector, 
having directional sensitivity, such as a fibre anemometer. 

It is, of course, a severe disadvantage of the fibre anemometer that i t  does not 
give information in the form of an electrical signal. The consequent limitations 
are accentuated by the fact that averaging over rather long periods is sometimes 
required to give a true mean. There is undoubtedly a need for a new instrument 
capable of accurate quantitative velocity measurements in turbulent free con- 
vection. However, it  is not at present clear how such an anemometer is to be 
designed, and it is likely that, if and when it is contrived, it will have to be used 
in conjunction with some other instrument, such as a fibre anemometer, that 
gives a direct qualitative impression of the characteristics of the velocity 
variations. 

Meantime, we have to be content with such impressions and the limited quanti- 
tative data that can be obtained. The present state of our knowledge about free 
convection is such that this restricted information is not to be scorned. Even the 
qualitative impressions (indicating, for instance, whether there are bursts of 
high-frequency activity, how the fluctuations compare in magnitude with 

t In addition to the information given there, there is relevant data in papers by White 
(1946) and Finn (1953), which I regrettably overlooked in 1959. 
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the mean velocity, and so on) require an understanding of the response 
of the anemometer to a turbulent flow field. $04-7 discuss this matter of 
the response. 

3. Some practical points 
First, however, there are a few points of interest regarding the actual use of 

quartz-fibre anemometers. 
The arrangement described in Tritton (19593) of having the fibre cemented 

into the end of a piece of hypodermic tubing was found very satisfactory for the 
experiments of Tritton (1963a,b). Easy and successful mounting of a fibre 
depends rather critically on mixing the cement to just the right consistency. 
I used ‘Polyfilla’ (a commercial product intended for filling cracks in walls). 
A small amount was sucked into the end of the hypodermic tubing, and the end 
of the fibre gently pushed into this. The cement had to be just, but only just, 
sufficiently fluid for the fibre to be pushed in without any tendency to bend. It 
was found essential to allow at least 2 days for the cement to set. Even with this 
care it is possible that now and then a fibre may move in its mount, and to avoid 
spurious results it is wise to observe through the tele-microscope the behaviour 
of the fixed end whilst the fibre is intermittently subjected to an air flow con- 
siderably faster than that in which it is to be used. 

It is necessary occasionally to clean fibres in constant use. Washing in ether 
has been found satisfactory; any very recalcitrant pieces of dust may be removed 
by gently running the tip of a finger along the fibre. Sometimes, a fibre picks up 
an electrostatic charge (with consequent rapid accumulation of dust); this is 
removed by leaving it near an a-particle source for a while. 

One unexpected trouble has been encountered; fibres used for some while in 
turbulent flow develop a temperature-dependence in their zero reading (i.e. the 
position of the free-end in zero velocity), which is not to be observed in a newly 
made fibre. A likely explanation is that the continuous bending motion produces 
partial devitrification along one side of the fibre (it has been my practice to use 
a fibre repeatedly the same way round in the mean flow, eo the necessary asym- 
metry existst); the coefficients of linear expansion of fused and crystalline quartz 
are sufficiently different for this to produce appreciable bending when the fibre 
is heated. The onset of this trouble can easily occur unnoticed, so it is necessary 
to watch out for it. 

For quantitative work the variation of Young’s modulus of fused quartz fibre 
(with diameter or between samples) (Tritton 1959~)  must be borne in mind. My 
procedure for the fibres used in the experiments of Tritton (1963 a, b) was to use 
the resonant frequencies as an indication of the diameter, taking the Young’s 
modulus from Tritton (1959a). This was satisfactory as the fibres were all 
nominally 20 or 45p in diameter and the purpose of the measurements was to 
allow for deviations from these. In  any new project, however, it  would be 
necessary to make separate diameter measurements so that the resonant fre- 

t If  this explanation is correct, the devitrification occurs on the downstream side of 
the fibre; i.e. on the inside of the curve. 
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quencies could give the Young’s modulus. This point applies, of course, only 
when the Reynolds number us drag coefficient curve is being used to give a 
theoretical calibration curve, not when direct calibration is possible. 

4. Response of a fibre anemometer to turbulence; introduction 
Although one of the virtues of the fibre anemometer is that it gives a direct 

impression of the characteristics of a turbulent flow, the detailed relationship 
between the velocity field and the motion of the free end of the fibre is complex. 
The rest of this paper considers ways in which the theory of the response can help 
with the interpretation of the observations. We can then know better what 
limitations there are to the qualitative impressions obtained by watching a fibre 
(through, for example, a change in the length scale appearing the same as a 
change in intensity). The results may also facilitate quantitative use of the 
instrument. 

First there are routine calculations on the fibre behaviour to be dealt with as 
cursorily as possible. The problem may be divided into the action of the velocity 
field in producing a force on the fibre and the response of the fibre to that force. 
The first will be dealt with by assuming that the force a t  any instant and any 
station on the fibre is related to the velocity then and there in the same way as 
in steady, two-dimensional flow. This is done largely as a matter of necessity, 
though the effect of unsteadiness can be regarded as a contribution to the 
damping of the fibre motion, and these points will be mentioned again in 9 6. 

Even with this assumption there is no general algebraic expression for the 
relationship between the velocity and the force. However, for the present 
purposes we may use as an approximation 

P = AU+BU2.  (1) 

The principal justification of this is its simplicity; however, suitable choice of 
A and B can produce quite a close approximation to the actual curve. The 
choice must be made for the particular fibre by considering the Reynolds number 
range that the fluctuating velocity covers. (In general, the coefficients a and /3 
in the non-dimensional form of (1) ,  

( 2 )  

respectively increase and decrease as the average R increases, though both 
sufficiently slowly for the ratio of the terms PR/a to increase.) Equation (1) does 
not make P an odd function of U ,  so it  is intended for the case when there is a 
mean velocity in the + U direction; however, occasional fluctuations to negative 
U should still be covered by the following analysis. In  fact, it is also assumed that 
low velocities are involved; otherwise there is no advantage in constraining the 
parabola to go through the origin. These are the conditions in which a fibre 
anemometer is most likely to be used, but the modification of the analysis for 
different circumstances would be straightforward. 

C, R2 = UR +PR2, 

Dividing equation (1) into mean and fluctuating parts 

F + P ’  = A ( U +  U’)+B(D+ U’)’, 

so that P = A U + B U ~ +  BF~. (4) 

(3) 
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For mean-velocity measurements in turbulent flow, it is important to be able to 
estimate a correction for the last term in (4). This requires a knowledge of p, 
which is one of the purposes of the following discussion of the fluctuations. 
Tritton ( 1 9 6 3 ~ )  (in particular, the appendix) will provide an example. 

Equation (3) gives 
F' = (A+I"BG) U'+J?(U'~-FZ), ( 51 

F'2 = (A2+ 4 A B 0  + 4B2c2-  BZU'2) U'2+ 2B(A + 3BD) a%+ B2U14. 

If we suppose that U7= 0 and VT= 3( U'2)2 (corresponding to a Gaussian pro- 
bability distribution function) 

This indicates that the curvature of the ( U ,  F)-dependence increases the effect 
of the fluctuations relative to the mean behaviour. 

For the theory of the response to the fluctuations, we have to use a linearized 
approximation to (5 ) ,  

( 7 )  

This is necessitated by the fact that the theory involves (as will be seen in $ 5 )  
correlations between the force fluctuations at different positions. Unless these 
are directly related to correlations of the velocity fluctuations the situation is 
complicated intolerably. Fortunately the curvature of the ( U ,  F)-curves is suffi- 
ciently slight that (6) may be a reasonable approximation. It is certainly accept- 
able at  larger values of U t 2 / U 2  than the corresponding relationship for a hot-wire 
anemometer. The error in ( 7 )  is of the same order as would be produced by 
neglecting the last term in (4). The more accurate form is retained in the latter 
case as that part of the theory is to be applied in a more direct quantitative way. 

The equation for the response of the fibre to the aerodynamic force will be 

F' = ( A  + 2BD) U'. 

- _  

taken as 
a2Y a.ly ay 
at2 ax4 at 

m- = F-El---A-. 

The damping term is probably not really linear, but, as this term will be neg- 
lected (see $85 and 6) except for one special purpose in $ 7 ,  this point may be 
passed over in the present context. The boundary conditions are those of a beam 
clamped at one end, free at  the other: 

and the quantity observed experimentally is 

h = y  at x = l .  
18 Fluid Mech. 16 
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Averagingt throughout equation (8) gives 

- a4jj B = EI-, 
ax4 

which may be integrated as usual to give 

Hence, the only difficulty of using a measured value of z, along with a laminar 
flow response curve, to indicate the mean velocity in a turbulent flow is the 
velocity fluctuation term in (4). 

Investigating the response of the fibre to the fluctuating force on it is much 
the most complicated part of the problem. Basically, it  consists of finding the 
statistical properties of y’ and in particular h‘ resulting from the equation 

(given by subtracting (10) from (8)), where P’ is given by the turbulent field and 
on the basis of equation (7) is essentially U‘.  

The fibre has resonances and these will dominate the response unless little of 
the energy of the turbulence is in the appropriate frequencies. However, this 
exception is important; during the experiments to be described in Tritton 
(1963 a, b) the most vigorous motion of the fibre was clearly in frequencies lower 
than any of the resonances. Hence, the main consideration of the response (0 5 )  
will be formulated in a low-frequency approximation. This much simplifies 
matters, but calculations are still needed to allow for incomplete correIation of 
the velocity fluctuations along the length of the fibre. 

The higher-frequency response, with the motion of the fibre dominated by its 
normal modes, forms a more-or-less separate study (required when inequality 
(14) in the next section is not satisfied). A theory of this motion has been 
developed along the lines of Powell’s (1958) general theory of the response of 
structures to random forces, with a specification of the turbulence similar to 
that used by Liepmann (1955) in his study of the buffetting of aircraft. This 
theory willnot be given in full here, as it playsno detailed role in the interpretation 
of fibre-anemometer observations.$ However, a couple of results will be quoted 
in 0 7, where they are required for one particular point. 

5. Response of a fibre at low frequencies 
For this case we neglect the inertia and damping terms in equation (In), 

i.e. we suppose that the time-scale of the turbulence is so large that for each 
point of the fibre at each instant there is effectively equilibrium between the 
aerodynamic and elastic forces. 

uniform mean flow. 

engineering structures subjected to turbulent flows. 

t F’ and y‘ are functions of both x and t ,  ij is a function of x, whilst P is constant for 

$ Probably the main interest of this theory is in its application to the response of 
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The neglect of the fibre inertia requires that 

which will be fulfilled if most of the energy of the turbulence is in frequencies 
satisfying 

The lowest resonant frequency of a fibre is given by 

ti2 < EI/m14. (14) 

v: = 0-313EI/ml4. 

Thus, it should be a satisfactory approximation to neglect the inertia term when 
the stimulation of resonances is not involved. Clearly, for this to be an advantage 
we need the damping term to be small too. The permissibility of this will be 
discussed in Q 6. 

Equation (12) now reduces to the ‘static’ problem 

a4y’ 
ax4 

EI __ = F’(x). 

The boundary conditions (9) apply to y’ as well as y, and so, by summing the 
displacements produced by the forces at different values of x 

Hence, the observed mean-square displacement is 

Writing X = x2 -xl and F‘(x,) F‘(x2) = F?R(X) (since we are considering 0 to 
be the same all along the fibre, equation (7) implies that R(X) may be taken as 
the velocity correlation coefficient of the turbulence), 

- (/::: [$(X + 1 - i (X + x ~ ) ~ ]  R(X) d X  dx,. (18) 

Although R(X) is really one of the quantities that should be measured in a 
survey of a turbulent flow, there is sufficient information available (Mickelsen 
1955; Townsend 1956; Grant 1958; Hinze 1959; Comte-Eellot 1961) to indicate 
the general shapes of R ( X )  curves that occur. It thus seems useful to have on 
record evaluations of (18) for a few cases that represent the range of behaviours 
of R ( X ) .  This is the main purpose of this section. 

I h’2 = __ (4~: I- +x!) E212 s1 0 

- 

The representative cases chosen are: 

(ii) R ( X )  = exp ( -X2 /a2) ,  
(iii) R ( S )  = (1+0*2214 [X[ /CA-~ ,  
(iv) R ( S )  = exp ( - 0.573 ISl/a) cos (I 0*573X/a), 
(v) R ( S )  = 4.5exp(-0.779 IXl/a)-3.5(1++0.779 \ X \ / U ) - ~ .  

(i) R ( X )  = exp ( -  ( x - ] /a ) ,  

18-2 
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The constants multiplying lX l /a  are chosen so that in each case a is defined 
by R(a)  = e-I.  

The first three cases indicate how much the shape of the correlation curve may 
affect the result even when R ( S )  is positive throughout. Case (i) is a shape that, 
by appropriate choice of a, approximates well to many such correlation functions. 
Others may be, for the most part, intermediate between cases (i) and (ii). At 
S = 0, R ( X )  must behave more like case (ii) than case (i), but commonly only 
for such a short distance that this region is not detectable. Batchelor & Proud- 
man (1956) have pointed out that the asymptotic variation of correlations at  

1 -0 

0.8 

0-6 

0.4 
R 

0.2 

0 

- 0.2 
i 

I I I I I I I I I I I I 
1 2 3 3 5 6 

S / a  

FIGUICE 1. The five representative correlation functions. 

large X is liable to be proportional to X-", with n around 5 ,  rather than expon- 
ential. Case (iii) is included as an indication of how much difference this might 
make. 

We are concerned with correlations of velocity components normal to the 
separation, and R ( S )  is likely (though not certain) to have a negative region. 
Cases (iv) and (v) cover this eventuality. The particular functions were chosen 
partly because the results could be calculated from those of the earlier cases. 
However, they can again show the effect of different detailed behaviours, par- 
ticularly at  large X and the five cases should indicate the range of possibilities. 
The constants in cases (iv) and (v) are chosen so that the heights of the negative 
parts of R are around the largest observed. The heights are, respectively, about 
0.15 and 0.11, but case (iv) has further positive regions at  larger X, where case 
(v) remains negative. 

Figure 1 shows the five correlation curves. Figure 2 shows the corresponding 
plots of (h'2)t 8EI/(F'2)* E4 against all to a logarithmic scale. This ordinate is 
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chosen as it must tend to 1 as all -+ 00 (complete correlation). The choice of a,  
the distance in which the correlation falls to I / e ,  as the length scale of each case 
is obviously somewhat arbitrary. For cases (iv) and (v), rather larger length 
scales (relative to the other cases) might be preferred particularly if the large 

all 
FIGURE 2. Curves showing the effect of incomplete correlation on the low-frequency 
response of a fibre anemometer. Different curves correspond to the different representative 
correlation functions shown in figure 1 by the same styles of line. 

eddies are considered to provide the scale. This would increase the difference 
between the various curves of figure 2,  except at large all. Another way of 
defining the length-scale is as 

b =  [" R d X .  
J --co 

It can be shown that the use of this instead of a would necessarily make the curves 
of figure 2 coincide at small bll; asymptotically 

For the five cases, (i) b = 2a; (ii) b = 1.77a; (iii) b = 2.261~; (iv) b = 1.07a; 
(v) b = 0.321a. By considering the curves of figure 2 shifted accordingly, one 
sees that the improvement (in the sense of making the curves closer to one 
another) is confined to low bll; elsewhere there is a deterioration. Also, although 
b is a convenient scale when R is positive throughout, its physical significance 
is doubtful when there is a negative region. 

The most useful outcome of all this is that the curves in figure 3 for the different 
cases form a fairly narrow band. Hence, it will not always be necessary to know 
the detailed behaviour of the correlation; some discussion is useful in terms of 
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the average curve. Moreover, the abscissa of figure 2 being logarithmic, order- 
of-magnitude knowledge of all may be. sufficient. The details of any such treat- 
ment will depend on its purpose. An example is provided by the considerations 
in the appendix to the following paper (Tritton 1963a). all must not be too small 
(not less than 0.03, say) for this to work well. Otherwise, the fractional differ- 
ences are appreciable and an endeavour should be made to replace all by bll. 

6. Damping 
We now examine whether the neglect in 9 5 of the damping term of equation 

(12) was allowable. 
There are four sources of damping: (i) internal friction; (ii) the drag on the 

fibre as it moves through the air; i.e. the effect of the velocity of the air relative 
to the fibre being not U but U - ay/at; (iii) the motion of the fibre causing the 
velocity measured to be that at a varying position; (iv) the inertia of the air; 
if the velocity fluctuations occur too rapidly the flow past the cylinder, and so 
the drag, may not settle down to that corresponding to the instantaneous 
velocity before a further change has occurred. 

The information about the properties of fused quartz needed for an estimate 
of (i)  does not exist, so far as I can ascertain. However, it  is reasonable to hope 
that it is small and to consider only the three aerodynamic effects. Some justi- 
fication for this is provided by the width of the resonances observed in the 
experiments (Tritton 1959a, b)  with fibres in front of a loudspeaker. These are 
of the same order as would be produced by effect (ii)7 effects (iii) and (iv) being 
absent in this arrangement. 

It is straightforward to find criteria for each of the three aerodynamic effects 
to be negligible in the low-frequency problem of 9 5 .  For (ii), the requirement is 
U' 9 ay'lat, or, taking the extreme case of the free end, U' % ah'/at. Now 

( A  i- mu) U' ,  
14 p' N -- v 14 

N .~ v 
8EI 8EI 

where v is the reciprocal of the time-scale of the turbulence. The requirement 
is thus 

14 
~ (A+ZBU)v  < 1. (19) 8EI 

Because of effect (iii)7 the velocity producing the drag is that at y and not 
that at the fixed position 3. 

U ( y ,  t = 0 )  2 u(y, - y'/ U )  
=== U ( y , O ) - - - .  Y'au 

u at 

The correction is as large as aylat only when U' is comparable with U .  Hence, it 
need not be considered when (ii) is not. 

Regarding (iv), a simple consideration of the Navier-Stokes equation indicates 
that the time-scale with which a deviation from the steady state tends to that 
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state is T - L/U,  where L is the length scale and U is the total velocity scale. Cal- 
culations by Payne (1958) of the drag produced by a starting flow past a cylinder 
confirm this if L is taken as the diameter. Hence, the requirement for this source 
of damping to be negligible is 

v g U / L .  

(We may note in passing that (21) amounts to requiring the length scale of the 
turbulence to be large compared with L. When this is fulfilled, another approxi- 
mation mentioned in 0 4, that the force at a point of the fibre is not influenced by 
the instantaneous variations of the velocity along the fibre’s length, is also 
satisfactory.) 

Neither (19) nor (31) is necessarily fulfilled, but inserting values of the various 
quantities, and remembering that v is small compared with the resonant fre- 
quencies whenever the theory is useful, indicates that they were fulfilled for the 
fibres I have used. Indeed, it seems likely that they would be fulfilled for any 
quartz-fibre anemometer of practical value. 

7. Use of the results in studying turbulent flows 
The purpose of the previous sections has been to provide a general picture of 

the behaviour of a fibre anemometer as a background to its use for investigating 
turbulent flows. Rather than generalizing about the ways in which the foregoing 
results can be so used, it seems more useful to allow the following papers (Tritton 
1963 a,, b )  to provide examples. 

Often the practical use of the theory may be qualitative and not very specific. 
The purpose of this paper has been as much to give a general understanding of 
fibre behaviour for such qualitative use as to provide quantitative results. For 
example, if a flow has two modes (such as the ‘quiescent’ and ‘active’ periods 
observed by Townsend 1959 above a heated horizontal surface), then it is 
useful to know how far an increase in fibre amplitude implies an increase in 
intensity or how large a change in length-scale would be needed to explain it 
without an increase in intensity. Figure 2 helps with this. 

When the low-frequency theory of 5 5 is being used in the assessment of obser- 
vations, it is necessary to have some check of its validity. In other words, we 
may not know initially whether inequality (14) is being fulfilled. The question 
then arises whether non-fulfilment would be adequately revealed by the stimula- 
tion of resonances. The remainder of this section is the answer to this question. 

We compare the low-frequency response and the first resonant response for 
an imaginary turbulent motion in which the energy is uniformly distributed over 
all frequencies up to some cut-off, Q, rather greater than w1 (the frequency of 
the first resonance). Then, from equations (7) and (18), 

(33 )  

where A, is a non-dimensional scaling factor to allow for incomplete correlation, 
being the ratio of the value of the double integral in (17) to its value when 



280 D. J .  Tritton 

correlation is complete. From the theory of the resonant response mentioned in 
$ 4, it  may be shown that 

~ 

7r 
(h)a)6rstres. = 

where m, k, and EI are the quantities appearing in equation (8) ,  ~ 1 ,  is the eigen- 
function of the first normal mode, normalized to 

and A, plays the role in equation (23) corresponding to that of A, in (23). On the 
reasonable assumption that the second of the effects listed in $ 6  is the main 
source of damping, 

and so 
k = A + ~ B C ,  

Since AU + BU2 - F - 8EIh/Z4 ( U ,  F ,  and h here denoting values for which the 
fibre is typically used) and Q - wl, the square root of this ratio is of the order of 
magnitude 

It might be thought that &/Al should be taken fairly small to allow for the fact 
that the higher-frequency motions producing (h12)first reB. may be correlated over 
smaller distances than the lower-frequency ones producing (D)low freq.. An 
important inference of the theory of the resonant response mentioned in $ 4 is 
that this effect is insignificant. Thus A,/A, - 1 and 

In practice this has usually been in the range 1 to 5. Hence, the stimulation of 
the first resonance is vigorous enough to reveal when a fibre ought not to be used 
on the assumption of zero fibre inertia. The consequent motion is usually quite 
distinctive, but in cases of doubt can be detected with the aid of a stroboscope. 

Much of this work was done when I was working in the Cavendish Laboratory, 
Cambridge, and described in Tritton (1960) (where the results are presented in 
greater detail). Since coming to Bangalore, I have extended the work, and 
I am grateful to Mr S. Durvasula for some helpful discussions. 
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